The Charge: 2619 12

Button Box

The button box is a separate device that emulates a joystick. It allows us to organize
functions effectively and have a separate person controlling those functions, not just the driver
which cuts down on time delay. The button box is designed by the programming team and built
by the electrical. In case of emergencies there is a spare button box which was used to design the
competition button box early on. The spare button box is pictured on the right and this years is
on the left.

Gear plunger

Gear doors

; A

.\

Each button has a different function. For example the switch labeled “gear doors” opens
and closes the gear doors. There are three different physical types of button on a button box:
press, toggle and pot. A press button is one like the “gear plunger” button, a toggle button is on
like the “gear doors” button and a pot is one like the “speed button”. Pots read in a value from
negative one to one inclusive with negative one on the far left. Toggle and press buttons can
cause methods either in one of three ways: when pressed, while held and when released. The
when pressed function causes a method to run once when the button is initially pressed. The
while held function causes a method to run continuously while a button is held. The when
released function causes a method to run once when the button is initially released.

The Charge: 2619 13
Vision

Key Features: Angle of Incidence, Angle of Robot, Distance and Suggested Angle of Rotation

What is Vision?

Vision is shorthand for the vision recognition and processing system part of our robot,
used primarily during the autonomous period. At the beginning of the build season, this was one
of several options chosen in order to allow for gear placement during autonomous. In the
competition robot, this code was not implemented in favor of using exact measurements which
offered more precise and consistent scoring during the autonomous period. Nonetheless, vision is
an almost fully developed system which allows for real time calculations on distance and angle
from the gear peg.

RoboRealm

The first option which was explored was RoboRealm. A quick first draft of code was
drawn up in visual basic which could find the distance and angle to the target with varying
consistency, but was later discontinued in favor of the use of GRIP.

GRIP

This was the vision processing tool chosen for our final vision recognition code. In
deciding whether to use GRIP or RoboRealm, we chose the more flexible option. GRIP was
available to be used on both the Kangaroo, a independent processing unit separate from the
roboRIO itself, as well as on the driver station.

FIRST placed reflective tape equidistant on each side of the gear peg. Our focus for
vision was to see those strips and be able to place a gear off of the information. To clearly
differentiate the tape from the airship, we shone a green light on the tape.

Our first task was to attempt to eliminate any parts of the picture that was not the target.
In order to accomplish this, we manipulated the HSL (Hue, Saturation, Lightness) values of the
picture through GRIP to only show green colored shapes.

After this we processed the image to find the borders of the targets, again using GRIP.
The borders were necessary for calculations involving distance and angle to the target. The end
result can be seen below.

The Charge: 2619 14

We also needed to account for situations where lights, other robots, or other general
distractions create a less than optimal image to work with. Potential situations included more or
less lines, or even diagonal lines. We solved this in two ways. First, the lines were sorted into
line groups, as GRIP would generally find anywhere from 1 to 8 lines per edge depending on
how straight the edges were. Second, a quality factor was added, in order to determine whether
or not the image was reliable. This factor was based on several factors such as the number of line
groups, as well as the ratio of the distances between the lines. A picture of the image with the
line groups can be seen below.

The vertical line groups were considered to be the edge of the target. Using a pixel to

inches conversion value, we were able to compare the the target’s width to the theoretical target’s
widths, in order to determine the angle of the robot. The angle of the incidence of the target and
the distance from the target were also calculated based on these ratios.

The suggested angle of rotation, a feature still in development at the time when it was
decided not to use vision, would give an angle from 180° to -180° to tell the robot where to turn.
These values would then be sent to the robot itself, and the movement would be handled in the
robot code, rather than this vision code.

Although we ended up not using vision, it was a great learning experience.

Camera

Our competition robot has two cameras mounted on it. One is centered at the top of our
robot on the front side. This camera is a USB camera, similar to one used to Skype on a
computer. The other camera was mounted on the left side, just above the front bumpers. This
camera is an [P camera, a type of camera most often used for closed-circuit surveillance.
Originally the USB camera was to be used for vision because it could plug separately into the
Kangaroo. The IP was to be used for driver visibility because there was no code needed for it to
operate, simply an IP address.

In the end we used the USB camera for driver visibility because we ended up not using
any vision code and it was more preferably placed for seeing the field. The code for adding the
USB camera ended up being quite simple, but it was interesting to figure out.

The Charge: 2619 15

Other Features
Key Features: Gyro, Deadband, Delinearization, CAN Lights, RADD Display and Timers

Deadband

Deadbands are a code feature that create a dead zone on the joystick. If the joystick is
within the zone, the robot doesn’t move. Deadbands allow for white noise on a joystick.
Joysticks often read small non-zero values even when they are not touched. Deadbands are
important to keep robots from moving when they are not supposed to be. Our robots deadband is
set to 0.1, so white noise is discounted and fine control is not lost.

Delinearization

Delinearization replaces the normal linear joystick curve with a power curve. Since some
fine control is lost through deadbanding, delinearization regains some of that control.
Delinearization also increases fine control at low speeds. Delinearization takes the joystick input
and raises it to a power. Since every output of a joystick is less than one the delinearization
output is always smaller. It’s important to make sure the delinearization power is odd however, or
the robot will no longer be able to drive backwards. Below is a graph of what the joystick output
and robot input would look like with delinearization. On the x-axis is the joystick output. Robot
input lies on the y-axis. The red curve is without delinearization. The blue curve is
delinearization with a power of two. The green curve is delinearization with a power of three.
The black box shows the deadband area. Due to driver preferences, the final delinearization
power was one.

The Charge: 2619 16

CAN Lights

CAN lights are strips of special lights that take input from the robot in order to change
their color and pattern. We use the CAN lights to display diagnostic information about our robot
to our drive team. During the game the lights default to our current alliances’ color. The lights
also display green while climbing, orange while shooting and purple while delivering a gear.

There is also code that displays a rainbow of colors based on the gyro’s position. This
code was passed over in favor of the diagnostics mentioned above, but it was a notable learning
experience. This process involved a conversion from HSL to RGB. This part of the code taught
us all about HSL (Hue, Saturation, Lightness) and RGB’s (Red, Green, Blue) different numeric
display of colors. It was also a learning experience for a slightly more complicated chaining of if
statements and comparisons.

RADD Display

Our RADD display is a text display on the back of our robot. We use it to display
information about our robot and sponsors during a match. The display receives 4 digital inputs to
choose which message to display. The inputs are set by converting a number from 0 to 15 into
binary, and using each digit to set a single input to on or off. This feature was a learning
experience in base ten to binary conversions and digital inputs.

The displays are selected based on various features of the robot. For instance during
Autonomous the RADD display shows the message “Look Mom, No Hands!”. Other specific
messages correspond with functions of the robot such as climbing or shooting. When none of the
specific functions are in use, the RADD display shows one of eight messages selected randomly.
These eight messages contain our sponsors list, FIRST related messages and other silly messages
such as “This Space for Rent”.

Timers

Timers were absolutely necessary for our code to operate effectively. Instead of creating
many loops that hamper the code’s readability we use timers. A timer is started as part of the first
actions done when a method is called. These timers are started before the methods action begins.
Any timer is checked in the is finished method. Is finished is checked every time the action is
executed and will return true or false. A true will end the action. Timers are a crucial part of the
is finished methods. For example, they account for overcoming initial friction in drive to current
function and allow our climbing systems override to operate both instantaneously and
continuously.

The Charge: 2619 17
Spike

A spike is a type of electrical relay. It has three states: off, forward, and back. We use a
spike to turn our RADD display on or off. The coding for a spike is unique because it has three

possible values: off, forward and reverse. It was also valuable to learn how to set up spikes in the
code.

Servo

Servos are rotating devices that have a limited range. This means that a servo can rotate
to a certain angle, but not more. Due to space limitations, there was an issue with feeding balls
into our indexer. Mechanical could attach an agitator to one side, but not the other due to motor
placement. The servo was meant to agitate the other side of the ball container. The servo was
never used, as a more effective design was found by mechanical. However, the code for the servo
was, again, a learning experience. Servos are unique in their declaration in the code and in how
they are given input. The experience using servos was invaluable despite the lack of use.

Solenoids

Solenoids are another type of electrical relay. They were used to operate the shifters in
the code. Solenoids are unique because they only exist in on and off. It was also a unique
experience to learn how to set up solenoids in the code.

Ultrasonic

An ultrasonic sensor uses pulses of sound to find its distance away from an object. We
considered using an ultrasonic sensor to find the proper distance for placing a gear on the airship.
However, this was replaced by our drive-to-current feature that allows us to stop when we hit a
wall. Despite the fact an ultrasonic sensor was never used, it was a learning experince code wise.
It was unique to code because of the values it returns. The ultrasonic sensor we used returned
values in volts, so we had to find the robots conversion from feet to volts and when to use it in
the code.

Gyroscope

A gyroscope, or gyro, is a device that returns an angular direction from -180 to 180
inclusive on three different planes. These planes are officially called pitch, yaw and roll. Yaw
returns the angle of the robot if it were placed inside a circle drawn on the ground. Pitch returns
the angle of the robot if it were placed inside a circle that went around the robot from front to
back. Roll returns the angle of the robot if it were placed inside a circle that went around the
robot from left to right. We only utilized the yaw values returned from our gyro.

The Charge: 2619 18

Like most parts, gyros are produced by many different companies. The gyro we use is a
navX gyro. The primary reason The Charge uses a navX gyro is because of its accuracy. Gyros
accumulate error over time. For instance at the end of a match the gyro might read zero degrees
as two degrees. navX gyros accumulate much less error than other gyros we have tried over the
years, under five degrees of error instead of close to twenty. This ensures accuracy at any point in
the match.

Our gyro is primarily used in our turning functions, see page 2. We also considered using
the gyro to drive the robot in a straight line during game’s teleoperated period. However, with
testing-based time constraints, we decided to average the joysticks inputs instead.

The Charge: 2619 19
Code Structure

Key Features: SourceTree, GitHub, Eclipse

GitHub

Our programming team consists of ten people, all working on the same code. It gets
difficult to communicate between all of us. One of our solutions to that problem is our use of
GitHub. GitHub is an online website. We use it to store all of our code in a mutually accessible
location. Every year the team creates a repository that will store our code for the season. A handy
feature of these repositories is that they allow us to reuse parts of code from previous years by
fulfilling FIRST requirement that any old code that we want to use again must be published
before then next build season.

Each repository also has a feature called issues. Issues gather everything that needs to be
done in the code to one location. They also let everyone see everything and pick what they would
like to work on. Below is our current issues screen. We have completed 96 different issues this
season. The icon on the right is who has chosen that issues to work on, this can be many or one
person. The comments within each issue also allow for dialogue and documentation.

Filters isiissue isiopen Labels Milestones
@ 50pen + 96 Closed Author = Labals = Projects = Milestones = Assignee~ Sortw
@ Try to get Control system Award a7
#1071 opened 14 days ago by abcurrie
(@ Add a servo motor as an agitator that swings back and forth when activated [Needs Testing A 1

ago by abcurre

#100 opened 18 da

@ Could a wide angle camera be used for vision recognition to assist when close to the peg 1
Vision Tracking

by abcurriz

77 opened on Mar 7

@ Update Driver Station]

#66 opened on Feb 25 by Menzla Sof |

@) Get Grip Running Visien Tracking

#20 gpened on Feb 15 by Menzla

SourceTree

SourceTree is a third party software that is made to work with GitHub and other online
code storage sites. SourceTree provides a few major features that we love, namely branching,
merging and committing.

Branching allows each individual to branch off of the main code. This allows everyone to
make as many changes to the code as they want without worrying about permanently messing up
something that already works. Branching also allows extensive testing of changes, without
unintended side effects.

The Charge: 2619 20

Merging is the opposite of branching. During merging all the branches are brought
together in one thread. After the process we have one branch with all the code changes.

Commits are another great feature. A commit is when any changes to the code are put
back on the internet. It doesn’t mean that the branch done or ready for testing, but it allows
another person to pick up where someone else left off. On SourceTree it is also possible to go
back to previous commits if something becomes terribly messed up. Below and on the right is a
picture of our SourceTree window from early March. The lines represent branches and the dots
commits. On the left is GitHub’s tracking of all of our commits during the season.

SteamBot2017 X
All Branches * | [¥] Show Remote Branches | Date Order v
i I EsTATLS Graph Description Date
Working Copy h [Cretes 3132017) (& | (1 SRGIR/HEAD] Formatted everything, ran robotbuilder. 13 Mar 2017 10:37
v 15 BRANCHES b Merge king branch 'origin/lnvertDrive_whenToggled' into Merging 13 Mar 2017 10:30
AOHR oI > Merge branch ClimberTeting nto Merging 13 Mar 2017 10:25
bl Merge branch ‘AutonChanges' into Merging 13 Mar 2017 9:28
AutonChanges " "
511 | Merge remote-tracking branch ‘origin/OpenCloseCG! inte Merging 13 Mar 2017 8:33
Labia L1 || Merge remote-tracking branch 'origin/SpeedControlCommand' into Merging 13 Mar 2017 8:29
Camen 31| | | Merge remote-tracking branch ‘arigin/DriveForward into Merging 13 Mar 2017 8:25
ClimberTesting | Merge branch "Yaw_Reset' into Merging 13 Mar 2017 8:21
DoSomethingCanlights | (L originfinvertbrive | (L TvertDrive) Tested. Ready for Merging!l! 11 Mar 2017 15:45
DriveForward [T ongin/OpentioseCe | (1 OpenCioseCG] Works. Timing need refining, 11 Mar 2017 15:16
ForwardDriveBtn T» origin/AutonChanges | 1z AutonChanges | Needs Tuning. Works in theory on the imaginary field. 11 Mar 2017 15:09
Indexer [T originfaw_Reset] ([Yaw_Reset] Tested. Ready for Merging!! 1 Mar 2017 14:55
InvertDrive_whenToggled (I origin/DriveForward | (1r DriveForward] Teggle Lock is tested. Reacy for Merging!!! 11 Mar 2017 14:45 = 2l T
master s origin/SpeedControlCommand | [1r SpeedControlcommand | Speed Control has been tested. Works, PID needs tu 11 Mar 2017 14:25 i ﬂ iokic
O Merging [} (7 origin/ClimberTesting] (1» T] Tested and ready to Mergel!! 11 Mar 2017 13:51
OpenClaseCG > Had some issues with the delin power always being zero, Possible error at competition??? Added manual setto one if 11 Mar 2017 13:41
PIDTurmRel Added code ta non-shooting autons to drive closer to the gear loading station. Needs LOTS of testing. 10 Mar 2017 19:07
ReersaAGkonSFarArdToN Made CGs to op and close/retract plung 9 Mar 2017 19:40
Bosetliraber Now a method for putting speed control on the robot. No btn on a joystick yet though, 8 Mar 2017 2047 P o
SpeedContralButton Called zeroYaw() in autoninit. 8 Mar 2017 20:28 | el .
SetCortroiCaminnd Changed reset to zeroVaw, 8 Mar 2017 20:25
Vi <] Changes to make override better for Kiley, 8 Mar 2017 20:09
G Reset the Yaw of the AHRS at the begining of each auton. 8 Mar 2017 20:02
~ - Added the button 6 (en both joysticks) which toggles the lock. When locked, the robot does not tur.{goes straight) & Mar 2017 19:42
> TAGS 3 Changed InvertDrive to whenToggled 8 Mar 2017 19:21
% RENOTES yesse== [Forwarabrivetn] Added 2 second timeout in the beginning of the climb, bitmapRandom now bitmaps after cho 7 Mar 2017 20:37
> Uncommented btns so all are now on the srart dashboard, Remember to r hen going to fonag 7 Mar 2017 20:23
g b Merge branch ‘Camera’ into Merging 6 Mar 2017 10:58

Eclipse

Eclipse is a free software that is often used as a coding platform. Eclipse can be linked to
SourceTree easily, making it the perfect platform for us to use. One more unique thing about our
code is that is command based. Commands are similar to classes. Command based code makes it
easier to work with buttons and cuts down on loops. With a FIRST plug-in called Robot Builder,
a command based system becomes simple. Robot Builder allows us to organize all elements of
the code in one area. Each subsystem has its motors in its folder. Each joystick input has its
buttons on it. Adding new commands or buttons is as simple as a right click and filling out a few
boxes. Robot Builder then creates auto-generated code that makes it simple to code such
functions.

Another plus of a command based system is organization. Each command does a few
things and any heavy methods are contained in the subsystems.

Command based systems also bring something called a command group. Command
groups run multiple commands sequentially or in parallel. We use command groups for
something like autonomous or opening our doors and plunging.

The Charge: 2619

> [} AllianceColorjava
1) ArcadeDrive java

21

1] *Runindexerjava [J] TumNDegreesAbsolutePIDjava 53 =

Motor
- | GearPlunger
Plunger
B | GearDoors

sensors ® Doors
| | Ledsoard
® Ledspke
® Ledoutput
® Ledoutout
@ Ledoutput2
LedOutputs
£ (| RapeClmber
RopeMotorl.
RopeMotor2
@ Ropenl
| | Cameralights
® Cameraspke
|| BalPickup
® Pickuphotor
| ndexer
Indexerotor
IndexerDl
CANLights
Vision
|| Ultrasonic

Operator Interface
B | Leftoystick
Lefiinvertstn

v # LefiPicupBin

® UlrasonicSensor

LeftshifttowButton

A
£} AutonomousCommand,java protected void usePIDOutput(double output) {
4f AutonShooterjova !/ Use outp drive your system, like a motor
> B Blinkjava / e.g: you
[F} ChargeCelorsjava
[} ClaytonDrivejava int sign = (int) Math.signum{output);
2} ClimbOverride.java double minSpeed = 8.15;
[} ClimbRopejava double finalOutput = sign * Math.max(minSpeed, Math.abs(output));
[7) CloseDoars,java . . X s
I ClosePlingejavs RobotMap.driveTrainleftFronttotor. pidirite(finalOutput);
-:_J; DEhVErGeEU.EVE RobotMap.driveTrainRightFronttotor. pidirite(-finaloutput);
ofl :
Al DeliverGearWithVision java i
[} DisableCurrentlimit java // called just before Command runs the firs
1} Drivelnverted.java protected void initialize() {
443 DriveToCurrent java this.setTimeout(1.5});
[#} DriveToTarget java previousCentrolMode = Robot.driveTrain.getControlMode();
17} DriveXFeethMM java getPIDController().setSetpoint(m Angle);
[J} DriveXSeconds java Robot.driveTrain. setControltode(TalonControltode. PercentVbus) ;
[7) DroneDrive.java }
13} EnableCurrentLimit,java
f! BendBlungesova // Called repeatedly when this Commsnd is scheduled to run
‘:J GeatPeqLeftAutonBlue java ;mt““d i Eiectte o
[} GearPegleftAutonRed,java
i v 3 i 1
l’r’\a, GembenMuldiettanilae iy // Make this return true when this Command no longer needs to run execute()
a4 Gesrbeghiacietinonfed v protected boolean isFinished() {
44} GearPegRightAutenBlue java return isTimedOut(} || getPIDController().onTarget();
|7} GearPegRightAutonRed java ¥
7 HaloDrivejava
[#) HueShift java // Called once after isFiniched returns true
[5) MotionMagicMede java . protected void end() {
[) OffCameraLightsjava Robot.driveTrain.stop();
[} OfCANLights,jsva Robot . driveTrain. setContraltiode (previousControliade) ;
3} OffLed,java b 5
|4 FRC -G Tyaml - X
File Edit View Export Help
New Save Open Undo Redo Verfy Java Wiing Table C++ Getting Started
SLEYER o A || Property valie
’ =g Name SteamBot2017
| | DrveTrain
i Autoramous Command Autonomous Command
S i ‘Autoromous command parameters C
@ RightRearMotor Team Nurber 2518
Controllers i Use Default Java Package
Pl JavaPackage forg.usfrst Fea618
o Edpse Workspace Ceinorkspace
fvb Foihin Export Subsystems
3 Export Commands
jrics i Smulaton World Fle Dema.world
Viring fle location Crworkepace

Your Robot

‘What is it?
This i the root of your robot tree. The robot tres is an organized representation of your robot that displays the key components and can
be used to generate skeleton code, wiring diagrams and more.

Properties

Top Left: Portion of our list of commands in Eclipse.

Top Right: Example of code in Eclipse. This code is specifically for our absolute turning

command. The UsePID method is unique to this type of command and does not

appear in most.

Bottom: Robot Builder. On the side are the different subsystems and the start of the joysticks and

their buttons.

The Charge: 2619 22

Testing

Key Features: Ply-Bot, Practice Bot and Competition Bot

Ply-Bot

As much as we like to pretend our code is perfect every time, it rarely is. Thus we
conduct extensive testing. Luckily we don’t have to wait until mechanical builds a robot to do
that. Our first stage of testing takes place on our ply-bot. Ply-bot is just a drive train and some
plywood holding electronics, but it serves perfectly for early stage testing. We use ply-bot to test
functions like set distance driving, set angle turning and different joystick configurations for
driving. Ply-bot serves as the platform for teaching new programmers about the robot and coding
the robot. Ply-bot is pictured on the far left at the bottom of the page.

Practice Bot

Ply-bot is only good until a certain stage. As the code becomes more specialized towards
the season’s game, we move towards the practice bot. Practice bot is nearly identical to our
competition bot. Practice bot started as a way for mechanical to prototype without using out of
bag time, but became very helpful to programming. Practice bot is the way we can test, debug
and fix code without taking valuable out of bag time. This is the robot that subsystem code and
tuning was done on.

Competition Bot

This is our actual competing robot that goes in the bag. The only things tested on this
robot were distances and angles specific to the field. It was still necessary to the overall process,
as it executes the code on the field during games. Competition bot is pictured on the far right at
the bottom of the page.

