

Introduction

Presenters:

- Isabel Chaput
 - Junior at H.H. Dow High School Midland, MI
 - Leader of Electrical Team: FRC-2619

Presenters:

Michael Most

- Senior at H.H. Dow High School Midland, MI
- One of Three Team Directors: FRC-2619

Introduction

Presenters:

- Robert Most
 - Professor/Electrical Engineering Ferris State University
 - Mentor: FRC-2619

Presentation Outline

- Goals & Background
 - Robert Most
- History and Research
 - Michael Most
- The Battery Test Kiosk Concept
 - Isabel Chaput
- Data Analysis and Findings
 - Michael Most
- Improvements and Future Goals
 - Isabel Chaput
- Conclusions / Q & A
 - Robert Most

About Team 2619

- H.H. Dow High School, Midland Michigan USA
- Founded in 2007
- Strong STEM Background
- Great Students and Mentors

Team 2619 Electrical Team

- Provide Students Opportunities in Building Electronic Projects
- Some Examples Include:
 - Star Ornament Project
 - 1300 LED Sound Meter
 - RADD Scrolling Displays
 - Nomad Motor Controller

Motor Controller

Importance of Battery Performance

- Poor Robot Functionality
- 2014 "Good" Battery Failure
 - Opportunity
 - Research Batteries
 - Understand Performance
 - 100% != ©

Project Goals

- Understand Battery Performance
- Provide Students with Engineering Research
 - Explore Industry Standards
 - Learn about Battery Technologies
 - Provide a Means for Research / Data Analysis
 - Provide Experience in Technical Writing
 - Create a Workflow for Testing
- Create a Device that other FRC Teams can build
- Create a Kiosk that can be taken to FRC Competitions

History and Research

Questions That Need to be Addressed:

- What are the Industry Standards in Battery Testing?
 - What are the Characteristics of FIRST Robotics Batteries?
 - Can we Create a Testing Procedure to Accurately Rank our Batteries?

Teams Accumulate Batteries...

• But which ones are can we rely on when we go to competition??

Battery Testing Standards

We Researched Battery Standards in Industry to Understand How Batteries are Tested:

- SAE J240 Life Test for Automotive Storage Batteries
- SAE J537 Automotive Storage Battery Testing
- UL 2054 Household and Commercial Batteries
- 60254-1 British Standard for Traction Battery Testing
- IEC 61982-3 Secondary batteries for the Propulsion of Electric Road Vehicles

Characteristics of FIRST Batteries Researched:

- Sealed Lead-Acid Battery Properties
- Internal Resistance Measurement
- Power Output Characteristic
- Effects of Age on Battery Performance

General Procedure to Gauge Performance

- Testing Procedure that...
 - Safe, Accurate, Consistent
 - Key Battery Parameters
 - Ranks Batteries
 - Use the Best Ones

Past Testing Procedure Done Manually

Student Testing a Battery Manually

A "Perfect Battery" Characteristic

How Would FIRST Batteries Perform on a Characteristic Graph?

- FIRST Batteries are not "Perfect"...
- Can a Test Platform be Developed to Quickly and Accurately Create a Characteristic Graph?
- What Information Can Such a Graph Provide?

New Testing Procedure In Action!

Conceptual Block Diagram Battery Test Hardware High Level Analysis Software

Battery Test Hardware

- A Bank of Power Resistors Can Vary a Load on the Battery Being Tested
- The Power Resistors are Switched On and Off as Directed by a Microcontroller
- The Microcontroller Measures the Battery Voltage and Current and Sends Data to High Level Software on the Host PC

Varying Battery Load

A Varying Load is Achieved by Rapidly Switching Power Resistors According to a Pre-Defined Recipe.

Battery Test Hardware

The Hardware is Directed by the Host PC Software to Execute Two Functions:

- 1. Provide a Varying Load Battery Test Profile.
 - This Test Executes in Less than 10 Seconds
 - > Loads the Battery From 0A to a Possible 125A
 - Sends Data to the Host PC for Graphing
- 2. Execute a Match Load Simulation.
 - ➤ This Test Simulates a Predefined 2 Minute Match Complete with Autonomous and Tele-Operated Modes

Battery Test Hardware Block Diagram Voltage Current Output Control Device Under Analog / Test Interface Digital To Host **USB** PC **Microcontroller Board**

Major Hardware Components

- 120A FIRST Robotics Main Breaker
- Eight power resistors
- Eight High Current Switches (MOSFETs)
- Current Sensor
- 12 Bit Analog to Digital Conversion
- USB Interface to Host PC

Hardware Top View Current Sensor High Current **Switches Status LEDs** Main Microcontroller Breaker

Hardware Controller Board

- Custom Circuit Design
- Use of Standard Industry Parts

Fully Populated Board

Battery Test Software

- Written in Open-Source Java-Like Language called 'Processing 3.0'
- Developed in the Aesthetics and Computation Group at the MIT Media Lab in 2012
- This Software is Available for Free

Processing 3.0 Environment

Battery Test Kiosk Production pdf | Processing 3.1.1

File Edit Sketch Debug Tools Help

00

```
Battery_Test_Kiosk_Production_pdf
```

```
text("Load #5 Current:", 50,580);
text("Load #6 Voltage:", 50,620);
text("Load #6 Current:", 50,650);
text("Load #7 Voltage:", 50,690);
text("Load #7 Current:", 50,720);
fill(0,255,0); // color of fill for button
stroke(127); // color of lines below
strokeWeight(5); // Thickness of line around buttons below
rect(50, 100, 200, 50, 100); // Define Button 1 [ start horiz, start vert, width, height, radius on corners ]
fill(0); // Color of text to fill as defined below; 0 = black, 255 = white
textSize(18);
text("Click To Start Test", 70, 130); // text + X/Y coordinate of where to start - center is +30 from the rect defined above
fill(0,255,0);
                 // color of fill for button
stroke (127);
                  // color of lines below
strokeWeight(5); // Thickness of line around buttons below
rect(50, 760, 200, 50, 100); // Define Button 2 [ start horiz, start vert, width, height, radius on corners ]
fill(0); // Color of text to fill as defined below; 0 = black, 255 = white
textSize(18);
text("Match Simulator", 76, 792); // text + X/Y coordinate of where to start - center is +30 from the rect defined above
                  // color of fill for button
fill(0,255,0);
stroke(127);
                 // color of lines below
strokeWeight(5); // Thickness of line around buttons below
rect(1525, 760, 200, 50, 100); // Define Button 3 [ start horiz, start vert, width, height, radius on corners ]
fill(0); // Color of text to fill as defined below; 0 = black, 255 = white
textSize(18);
text("Print Results", 1570, 792); // text + X/Y coordinate of where to start - center is +30 from the rect defined above
myPort = new Serial(this, "COM5", 19200); // Starts the serial communication
myPort.bufferUntil('\n'); // Defines up to which character the data from the serial port will be read. The character '\n' or 'New Line'
```


Video of Test Procedure

Data Output and Analysis

- Examples of Characterization Graphs
- How Data was Analyzed
- Ranking Criteria
- Data Analysis Graphs

Typical Output After Complete Test

Click To Start Test

Open Circuit Voltage: 11.68V
Open Circuit Current: 0.00A
Load #1 Voltage: 11.62V

Load #1 Voltage: 11.62V Load #1 Current: 1.23A

Load #2 Voltage: 11.07V Load #2 Current: 9.36A

Load #3 Voltage: 10.39V

Load #3 Current: 20.36A

Load #4 Voltage: 9.50V

Load #4 Current: 36.03A

Load #5 Voltage: 8.78V

Load #5 Current: 48.34A

Load #6 Voltage: 8.16V

Load #6 Current: 58.05A

Load #7 Voltage: 7.22V

Load #7 Current: 72.50A

Match Simulator

How Data was Analyzed

- "Loads" of Information
 - Battery Resiliency through Disparity
 - Slope of Line is the Battery Internal Resistance
 - Slope is Sometimes Non-Linear!
 - Maximum Power Output After Simulation is Easily Determined
- Performance Over Time

Excellent Battery Characteristic Graph

Click To Start Test

Open Circuit Voltage: 12.68V Open Circuit Current: 0.00A Load #1 Voltage: 12.66V Load #1 Current: 1.32A Load #2 Voltage: 12.41V Load #2 Current: 10.46A Load #3 Voltage: 12.11V Load #3 Current: 23.62A Load #4 Voltage: 11.68V Load #4 Current: 44.07A Load #5 Voltage: 11.32V Load #5 Current: 62.01A 11.00V Load #6 Voltage: Load #6 Current: 77.84A Load #7 Voltage: 10.52V Load #7 Current: 104.42A

Match Simulator

Poor Battery Characteristic Graph

Enter Battery I.D. Information: 2010-2

Click To Start Test

Open Circuit Voltage: 10.89V

Open Circuit Current: 0.00A

Load #1 Voltage: 10.47V Load #1 Current: 1.13A

Load #2 Voltage: 7.97V

Load #2 Current: 6.82A

Load #3 Voltage: 6.10V

Load #3 Current: 12.03A

Load #4 Voltage: 4.49V

Load #4 Current: 17.09A

Load #5 Voltage: 3.60V

Load #5 Current: 19.88A

Load #6 Voltage: 3.02V

Load #6 Current: 21.58A

Load #7 Voltage: 2.35V

1

Load #7 Current: 23.69A

Match Simulator

Ranking Criteria

- Max. Power Output after Simulation
 - Resiliency Results in Higher Value
- Battery Internal Resistance
 - Slope of the Curve
 - Non-Sagging Voltage Results in Lower Value
- Strong Negative Correlation
 - They are Related!

Performance Range of Batteries Tested

- 28 Batteries Were Tested
 - Five Different Manufacturers
 - Age Range 0 9 Years
 - Number of Charge Cycles Unknown
- All Indicated "Fully Charged"
 - Confirmed by Hand-Held Device
- Batteries Were Ranked by Performance Criteria

Data Analysis Spreadsheet

	.,		Mfg			Internal Res.	Final I _o	Final V _o	Final P _o (Watts)	Final P _o Rank	Average
Battery ID	Year	Manufacturer	Type	Initial mΩ	Final mΩ	Rank				_	Rank
2017-10	2017	Duracell DURA12-18NB	1	14.86		1	103.76			2	1.5
2017-9	2017	Duracell DURA12-18NB	1	15.62	15.20	2	104.42			1	1.5
2017-7	2017	Duracell DURA12-18NB	1	16.19	15.74	4	103.32			3	3.5
2016-2	2016	Power Patrol SLA1116	5	15.23	15.39	3	102.91	10.34		5	4
2018-1	2018	Genesis NP18-12B	2	17.47	17.23	5	102.31	10.29	1052.8	6	5.5
2017-3	2017	Power Patrol SLA1116	5	17.95	18.15	9	103.35	10.38	1072.8	4	6.5
2016-3	2016	Genesis NP18-12B	2	17.92	17.90	7	102.19	10.27	1049.5	7	7
2018-2	2018	KEYO KT-12180 HRT GEL	3	19.94	18.14	8	101.40	10.19	1033.3	9	8.5
2014-2	2014	MKPowered ES17-12	4	17.30	18.43	10	100.96	10.12	1021.7	11	10.5
2017-2	2017	Power Patrol SLA1116	5	18.21	19.74	13	101.46	10.21	1035.9	8	10.5
2018-3	2018	KEYO KT-12180 HRT GEL	3	17.70	17.74	6	100.21	10.07	1009.1	15	10.5
2017-5	2017	Genesis NP18-12B	2	19.67	19.34	12	101.12	10.16	1027.4	10	11
2014-1	2014	Genesis NP18-12B	2	19.52	18.85	11	100.49	10.10	1014.9	13	12
2017-4	2017	Power Patrol SLA1116	5	19.11	19.89	15	100.62	10.07	1013.2	14	14.5
2017-6	2017	KEYO KT-12180 HRT	3	19.77	21.20	18	100.62	10.10	1016.3	12	15
2017-8	2017	KEYO KT-12180 HRT	3	19.70	19.76	14	99.92	10.00	999.2	17	15.5
2017-1	2017	Power Patrol SLA1116	5	19.77	19.97	16	100.02	10.05	1005.2	16	16
2014-3	2014	MKPowered ES17-12	4	22.02	20.86	17	97.35	9.74	948.2	19	18
2015-1	2015	Genesis NP18-12B	2	22.60	21.53	20	98.45	9.89	973.7	18	19
2014-4	2014	MKPowered ES17-12	4	22.14	21.28	19	94.43	9.47	894.3	22	20.5
2016-1	2016	Power Patrol SLA1116	5	24.44	21.89	21	96.47	9.68	933.8	20	20.5
2015-3	2015	Genesis NP18-12B	2	23.90	23.53	22	94.74	9.52	901.9	21	21.5
2015-2	2015	Genesis NP18-12B	2	22.78	24.48	24	94.36	9.45	891.7	23	23.5
2013-3	2013	Genesis NP18-12B	2	24.38	24.01	23	93.23	9.33	869.8	25	24
2012-4	2012	MKPowered ES17-12	4	23.35	26.04	25	93.74	9.41	882.1	24	24.5
2012-1	2012	Genesis NP18-12B	2	32.12	28.55	26	85.79	8.59	736.9	26	26
2009-1	2009	MKPowered ES17-12	4	27.62	34.98	27	72.50	7.22	523.5	27	27
2010-2	2010	MKPowered ES17-12	4	57.82	151.30	28	23.69	2.35	55.7	28	28

Data Analysis Graph

Other Interesting Outcomes

Other Interesting Outcomes

Improvements and Future Goals

Logging Battery Charging Cycles

Other FIRST Teams Building the Kiosk

 Collective Database for Battery Performance

Logging Battery Charging Cycles

Outfit Each Battery With an RFID Tag

 Create a Mobile Application that a Pit Crew Uses to Track Charging Cycles

 Track Charging Cycles to Correlate with Battery Performance Curves

Mobile App Using RFID Technology

An RFID Tag Affixed to each Battery

 An Application Could be Developed to Log the Battery Each Time it is Charged

Smartphone RFID Reader Example

Other FIRST Teams Building a Kiosk

 Team 2619 Will Provide a Parts List and High Level Code for any Team That Wants to Build a Battery Test Kiosk

 Interested Teams Would be Able to Share Data

 Would Provide an Excellent Off-Season Project

Battery Test Kiosk Cost Breakdown

- A Total of 130 Individual Parts
- Majority of Cost in Power Resistors

Component / Assembly	Cost
Power Resistors	\$220
Power Supply Components	\$65
PC Board and Components	\$102
Software	\$0
Total Cost	\$387

Acknowledgements

- Amelia Mylvaganam (Student Team 2619)
 - Data Analysis
 - Battery Testing
 - Video Demonstration Participant
- Josh Kline (Student Team 2619)
 - Battery Testing
 - Battery Test Kiosk Cost Breakdown
- Team 2619
 - Unwavering Commitment to STEM
- FIRST Robotics
 - Opportunity to Present This Seminar

Conclusions / Q & A

• A 2-D Line Graph Characterization Curve Provides Insight in Battery Performance.

Conclusions / Q & A

- A Match Simulator Allows a Battery to be Tested Without A Robot!
- Data Can be Stored and Shared.
- Other FIRST Teams Can Build the Kiosk.
 - Sign Up Sheet After the Presentation
- More Information in Our Battery Report:
 - Download pdf at www.the-charge.com

